Add like
Add dislike
Add to saved papers

Morphologic and morphometric study on microvasculature of developing mouse kidneys.

A proper morphogenesis of the renal microvasculature is crucial not only for fulfilling the renal function but also to slow down the progression of chronic kidney disease in adulthood. However, the current description of the developing microvasculature is incomplete. The present study investigated the morphogenesis and volume densities of the renal microvasculature using computer-assisted tubular tracing, immunohistochemistry for CD34, and unbiased stereology. The earliest glomerular capillaries were observed at the lower cleft of the S-shaped nephrons, as simple loops connecting the afferent and efferent arterioles. In parallel with this, the peritubular capillaries were established. Noticeably, from early nephrogenesis on, the efferent arterioles of the early-formed glomeruli ran in close proximity to their own thick ascending limbs. In addition, the ascending vasa recta arising from the arcuate or interlobular veins also ran in close proximity to the thick descending limb. Thus, the tubules and vessels formed the typical countercurrent relation in the medulla. No loop bends were observed between descending and ascending vasa recta. The volume density of the cortical and medullary peritubular capillary increased 3.3- and 2.6-fold, respectively, from 2.34 (0.13) and 7.03 (0.09)% [means (SD)] at embryonic day 14.5 (E14.5) to 7.71 (0.44) and 18.27 (1.17)% at postnatal day 40 (P40). In contrast, the volume density of glomeruli changed only slightly during kidney development, from 4.61 (0.47)% at E14.5 to 6.07 (0.2)% at P7 to 4.19 (0.47)% at P40. These results reflect that the growth and formation of the renal microvasculature closely correspond to functional development of the tubules.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app