Add like
Add dislike
Add to saved papers

Hierarchically ZnIn 2 S 4 nanosheet-constructed microwire arrays: template-free synthesis and excellent photocatalytic performances.

Nanoscale 2018 March 9
Hierarchically ZnIn2 S4 nanosheet-constructed microwire arrays (NCMAs) on a zinc substrate have been synthesized for the first time through a one-step solvothermal method without using any template or surfactant. The as-synthesized ZnIn2 S4 microwires are constructed by vertical nanosheets preferentially exposing (006) facets, which are about 1-5 μm in diameters and larger than 10 μm in average length. Experimental results demonstrate that the hierarchically ZnIn2 S4 NCMAs are converted from intermediate components of single crystalline indium nanowires, which are generated along the direction of (101) planes by a displacement reaction between Zn and In3+ during the initial synthesis process. This conversion of indium nanowires to hierarchically ZnIn2 S4 NCMAs has been explained by a novel corrosion-exchange-self-assembly mechanism, which might indicate a novel strategy for preparing other ternary sulphide nano-microwire arrays. The prepared ZnIn2 S4 NCMAs are used as photocatalysts, demonstrating effective photocatalytic degradation activity for diverse organic pollutants including different dyes, tetracycline and 2,4,6-tribromophenol (2,4,6-TBP). This efficient photocatalytic activity is ascribed to the strong absorption of ZnIn2 S4 NCMAs in a wide range from ultraviolet to visible light as well as the preferentially exposed (006) facets of ZnIn2 S4 nanosheets.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app