Add like
Add dislike
Add to saved papers

Serelaxin induces Notch1 signaling and alleviates hepatocellular damage in orthotopic liver transplantation.

Liver ischemia-reperfusion injury (IRI) represents a risk factor for early graft dysfunction and an obstacle to expanding donor pool in orthotopic liver transplantation (OLT). We have reported on the crucial role of macrophage Notch1 signaling in mouse warm hepatic IRI model. However, its clinical relevance or therapeutic potential remain unknown. Here, we used Serelaxin (SER), to verify Notch1 induction and putative hepatoprotective function in ischemia-reperfusion-stressed OLT. C57BL/6 mouse livers subjected to extended (18-hour) cold storage were transplanted to syngeneic recipients. SER treatment at reperfusion ameliorated IRI, improved post-OLT survival, decreased neutrophil/macrophage infiltration, and suppressed proinflammatory cytokine programs, while simultaneously increasing Notch intracellular domain (NICD) and hairy and enhancer of split 1 (Hes1) target genes. In bone marrow-derived macrophage cultures, SER suppressed proinflammatory while enhancing antiinflammatory gene expression concomitantly with increased NICD and Hes1. Hepatic biopsies from 21 adult primary liver transplant patients (2 hours postreperfusion) were divided into low-NICD (n = 11) and high-NICD (n = 10) expression groups (western blots). Consistent with our murine findings, human livers characterized by high NICD were relatively IRI resistant, as shown by serum alanine aminotransferase (ALT) levels at day 1 post-OLT. Our study documents the efficacy of SER-Notch1 signaling in mouse OLT and highlights the protective function of Notch1 in liver transplant patients.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app