Add like
Add dislike
Add to saved papers

Luteoloside attenuates anoxia/reoxygenation-induced cardiomyocytes injury via mitochondrial pathway mediated by 14-3-3η protein.

Ischemia/reperfusion (I/R) injury is the major cause of acute cardiovascular disease worldwide. 14-3-3η protein has been demonstrated to protect myocardium against I/R injury. Luteoloside (Lut), a flavonoid found in many Chinese herbs, exerts myocardial protection effects. However, the mechanism remains unclear. We hypothesize that the cardioprotective role of Lut is exerted by regulating the 14-3-3η signal pathway. To investigate our hypothesis, an in vitro I/R model was generated in H9C2 cardiomyocytes by anoxia/reoxygenation (A/R) treatment. The effects of Lut on cardiomyocytes with A/R injury were assessed by determining the cell viability, lactate dehydrogenase levels, intracellular reactive oxygen species levels, mitochondrial permeability transition pores (mPTP) openness, caspase-3 activity, and apoptosis rate. The effects on protein expression were tested using western blot analysis. Lut attenuated A/R-induced injury to cardiomyocytes by increasing the expression of 14-3-3η protein and cell viability; decreasing levels of lactate dehydrogenase, reactive oxygen species, mPTP openness, caspase-3 activity, and low apoptosis rate were observed. However, the cardioprotective effects of Lut were blocked by AD14-3-3ηRNAi, an adenovirus knocking down the intracellular 14-3-3η expression. In conclusion, to our knowledge, this is the first study to demonstrate that Lut protected cardiomyocytes from A/R-induced injury via the regulation of 14-3-3η signaling pathway.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app