Add like
Add dislike
Add to saved papers

Toxicological study of the degradation products of antineoplastic agent etoposide in commercial formulation treated by heterogeneous photocatalysis using SrSnO 3 .

Etoposide is an antineoplastic agent used for treating lung cancer, testicular cancer, breast cancer, pediatric cancers, and lymphomas. It is a pollutant due to its mutagenic and carcinogenic potential. Disposal of waste from this drug is still insufficiently safe, and there is no appropriate waste treatment. Therefore, it is important to use advanced oxidative processes (AOPs) for the treatment and disposal of medicines like this. The use of strontium stannate (SrSnO3 ) as a catalyst in heterogeneous photocatalysis reactions has emerged as an alternative for the removal of organic pollutants. In our study, SrSnO3 was synthesized by the combustion method and characterized by X-ray diffraction (XRD), Raman, UV-Vis, and scanning electron microscopy (SEM) techniques, obtaining a surface area of 3.28 m2  g-1 with cubic and well-organized crystallinity and a band gap of 4.06 eV. The experimental conditions optimized for degradation of an etoposide solution (0.4 mg L-1 ) were pH 5 and catalyst concentration of 1 g L-1 . The results showed that the degradation processes using SrSnO3 combined with H2 O2 (0.338 mol L-1 ) obtained total organic carbon removal from the etoposide solution, 97.98% (± 4.03 × 10-3 ), compared with TiO2 , which obtained a mineralization rate of 72.41% (± 6.95 × 10-3). After photodegradation, the degraded solution showed no toxicity to zebrafish embryos through embryotoxicity test (OECD, 236), and no genotoxicity using comet assay and micronucleus test.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app