JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
REVIEW
Add like
Add dislike
Add to saved papers

Monoamine Oxidases.

Monoamine oxidases A and B (MAO A and B) are mammalian flavoenzymes bound to the outer mitochondrial membrane. They were discovered almost a century ago and they have been the subject of many biochemical, structural and pharmacological investigations due to their central role in neurotransmitter metabolism. Currently, the treatment of Parkinson's disease involves the use of selective MAO B inhibitors such as rasagiline and safinamide. MAO inhibition was shown to exert a general neuroprotective effect as a result of the reduction of oxidative stress produced by these enzymes, which seems to be relevant also in non-neuronal contexts. MAOs were successfully expressed as recombinant proteins in Pichia pastoris, which allowed a thorough biochemical and structural characterization. These enzymes are characterized by a globular water-soluble main body that is anchored to the mitochondrial membrane through a C-terminal α-helix, similar to other bitopic membrane proteins. In both MAO A and MAO B the enzyme active site consists of a hydrophobic cavity lined by residues that are conserved in the two isozymes, except for few details that determine substrate and inhibitor specificity. In particular, human MAO B features a dual-cavity active site whose conformation depends on the size of the bound ligand. This article provides a comprehensive and historical review of MAOs and the state-of-the-art of these enzymes as membrane drug targets.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app