Add like
Add dislike
Add to saved papers

Tactile Feedback can be Used to Redistribute Flexion Motion Across Spine Motion Segments.

This experiment investigates the efficacy of tactile feedback in affecting changes to dynamic spine movements. A sample of (n = 24) young, healthy males were assessed while completing targeted spine flexion movements with instruction to minimize stretching of the skin beneath an applied tactile stimulus (liquid bandage). Localized tactile stimuli were placed bilaterally at either lumbar (L4), lower thoracic (T10) or upper thoracic (T4) levels. Results demonstrate that localized tactile feedback elicited a re-distribution of spine flexion movement across spine sub-sections (e.g. lumbar vs. thoracic) and intervertebral segments (e.g. C7/T1 through L5/S1). Further, tactile feedback successfully limited the magnitude of end-range flexion, but did not limit functional mid-range spine flexion. Finally, tactile feedback located in the lower thoracic region (T10) increased thoracic flexion variability; however, tactile feedback located at the T4 and L4 regions had no significant effect on movement variability. These findings provide evidence that spine neuromuscular control patterns can be altered using simple tactile stimuli. In terms of low back injury prevention and/or rehabilitation, the tactile feedback investigated here has apparent utility in limiting recognized mechanical risk factors for low back injury; specifically, the local incidence of flexion at specific spine levels, and the incidence of end-range flexion.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app