Journal Article
Review
Add like
Add dislike
Add to saved papers

Redox control of vascular smooth muscle cell function and plasticity.

Vascular smooth muscle cells (SMC) play a major role in vascular diseases, such as atherosclerosis and hypertension. It has long been established in vitro that contractile SMC can phenotypically switch to function as proliferative and/or migratory cells in response to stimulation by oxidative stress, growth factors, and inflammatory cytokines. Reactive oxygen species (ROS) are oxidative stressors implicated in driving vascular diseases, shifting cell bioenergetics, and increasing SMC proliferation, migration, and apoptosis. In this review, we summarize our current knowledge of how disruptions to redox balance can functionally change SMC and how this may influence vascular disease pathogenesis. Specifically, we focus on our current understanding of the role of vascular nicotinamide adenine dinucleotide phosphate (NADPH) oxidases (NOX) 1, 4, and 5 in SMC function. We also review the evidence implicating mitochondrial fission in SMC phenotypic transitions and mitochondrial fusion in maintenance of SMC homeostasis. Finally, we discuss the importance of the redox regulation of the soluble guanylate cyclase (sGC)-cyclic guanosine monophosphate (cGMP)-protein kinase G (PKG) pathway as a potential oxidative and therapeutic target for regulating SMC function.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app