Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Tracking the route of molecular oxygen in O 2 -tolerant membrane-bound [NiFe] hydrogenase.

[NiFe] hydrogenases catalyze the reversible splitting of H2 into protons and electrons at a deeply buried active site. The catalytic center can be accessed by gas molecules through a hydrophobic tunnel network. While most [NiFe] hydrogenases are inactivated by O2 , a small subgroup, including the membrane-bound [NiFe] hydrogenase (MBH) of Ralstonia eutropha , is able to overcome aerobic inactivation by catalytic reduction of O2 to water. This O2 tolerance relies on a special [4Fe3S] cluster that is capable of releasing two electrons upon O2 attack. Here, the O2 accessibility of the MBH gas tunnel network has been probed experimentally using a "soak-and-freeze" derivatization method, accompanied by protein X-ray crystallography and computational studies. This combined approach revealed several sites of O2 molecules within a hydrophobic tunnel network leading, via two tunnel entrances, to the catalytic center of MBH. The corresponding site occupancies were related to the O2 concentrations used for MBH crystal derivatization. The examination of the O2 -derivatized data furthermore uncovered two unexpected structural alterations at the [4Fe3S] cluster, which might be related to the O2 tolerance of the enzyme.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app