Add like
Add dislike
Add to saved papers

Phenazines regulate Nap-dependent denitrification in Pseudomonas aeruginosa biofilms.

Journal of Bacteriology 2018 Februrary 21
Microbes in biofilms face the challenge of substrate limitation. In particular, cells in Pseudomonas aeruginosa biofilms growing in the laboratory or during host colonization often become limited for oxygen. Previously we found that phenazines, antibiotics produced by P. aeruginosa , balance the intracellular redox state for cells in biofilms. Here, we show that genes involved in denitrification are induced in phenazine-null (Δ phz ) mutant biofilms grown under an aerobic atmosphere, even in the absence of nitrate. This finding suggests that resident cells employ a bet-hedging strategy to anticipate the potential availability of nitrate and counterbalance their highly reduced redox state. Consistent with our previous characterization of aerobically-grown colonies supplemented with nitrate, we find that the pathway that is induced in Δ phz colonies combines the nitrate reductase activity of the periplasmic enzyme Nap with downstream reduction of nitrite to nitrogen gas catalyzed by the enzymes Nir, Nor, and Nos. This regulatory relationship differs from the denitrification pathway that functions under anaerobic growth with nitrate as the terminal electron acceptor, which depends on the membrane-associated nitrate reductase Nar. We identify sequences in the promoter regions of the nap and nir operons that are required for the effects of phenazines on expression. We also show that specific phenazines have differential effects on nap gene expression. Finally, we provide evidence that individual steps of the denitrification pathway are catalyzed at different depths within aerobically grown biofilms, suggesting metabolic cross-feeding between community subpopulations. IMPORTANCE An understanding of the unique physiology of cells in biofilms is critical to our ability to treat fungal and bacterial infections. Colony biofilms of the opportunistic pathogen Pseudomonas aeruginosa , grown under an aerobic atmosphere but without nitrate, express a denitrification pathway that differs from that used for anaerobic growth. We report that the components of this pathway are induced by electron acceptor limitation and that they are differentially expressed over biofilm depth. These observations suggest that (i) P. aeruginosa exhibits "bet hedging" in that it expends energy and resources to prepare for nitrate availability when other electron acceptors are absent; and (ii) that cells in distinct biofilm microniches may be able to exchange substrates to catalyze full denitrification.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app