Add like
Add dislike
Add to saved papers

Characterisation of Zika virus infection in primary human astrocytes.

BMC Neuroscience 2018 Februrary 21
BACKGROUND: The recent Zika virus (ZIKV) outbreak has linked ZIKV with microcephaly and other central nervous system pathologies in humans. Astrocytes are among the first cells to respond to ZIKV infection in the brain and are also targets for virus infection. In this study, we investigated the interaction between ZIKV and primary human brain cortical astrocytes (HBCA).

RESULTS: HBCAs were highly sensitive to representatives of both Asian and African ZIKV lineages and produced high viral yields. The infection was associated with limited immune cytokine/chemokine response activation; the highest increase of expression, following infection, was seen in CXCL-10 (IP-10), interleukin-6, 8, 12, and CCL5 (RANTES). Ultrastructural changes in the ZIKV-infected HBCA were characterized by electron tomography (ET). ET reconstructions elucidated high-resolution 3D images of the proliferating and extensively rearranged endoplasmic reticulum (ER) containing viral particles and virus-induced vesicles, tightly juxtaposed to collapsed ER cisternae.

CONCLUSIONS: The results confirm that human astrocytes are sensitive to ZIKV infection and could be a source of proinflammatory cytokines in the ZIKV-infected brain tissue.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app