JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Impact of Edge Groups on the Hydration and Aggregation Properties of Graphene Oxide.

Molecular dynamics simulations were used to describe and quantify the role of edge groups on the hydrating properties of graphene oxide (GO). For this, six different oxygen concentrations were investigated, and in four of them, carboxyl groups were present. Structural analysis indicates a greater probability for the water solvation around the GO edges in detriment of the region of its basal plane, while hydrogen bonding analyses indicates that edge groups are very expressive, participating in about 60% of the total number of bonds. The impact of this bond network formed by edge groups is rationalized in energetic and thermodynamic terms. The resulting hydrophilicity observed, as expected, is of electrostatic origin and has a larger contribution from the edge groups that varies from 22 to 57% depending on the concentration. Hydration free energy and potential of mean force calculations support these findings. It was observed that the edge groups contribute up to 51% of the total hydration-free energy and that the PMF indicates the tendency for spontaneous aggregation at all investigated concentrations, being lower the higher the concentration of oxygen.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app