Add like
Add dislike
Add to saved papers

The Role of Matrix Metalloproteinase-3 in the Doxycycline Attenuation of Intracranial Venous Hypertension-Induced Angiogenesis.

Neurosurgery 2018 December 2
BACKGROUND: The molecular mechanism of brain arteriovenous malformation (BAVM) is largely unknown. Intracranial venous hypertension (VH) may enhance focal angiogenesis and promote BAVM development and progression. A rat VH model effectively simulates the hemodynamic microenvironment of this disease.

OBJECTIVE: To explore the effect of doxycycline in VH-related angiogenesis, as well as the role of matrix metalloproteinase-3 (MMP-3) and other molecular factors.

METHODS: A rat VH model was generated by common carotid artery and distal external jugular vein anastomosis. Microvessel density (MVD) in the perisinus area and expression of MMP-3/2/9, VEGF, TIMP-1, TGF-β, and HIF-1α were examined, with and without daily doxycycline treatment for 4 wk. The effects of doxycycline were verified in Vitro using human brain microvascular endothelial cells (HBMECs). MMP-3 overexpression or knockdown in HBMECs was used to confirm the role of MMP-3 in cell functions.

RESULTS: MVD in the perisinus cortex was greatly increased after VH. Doxycycline decreased MVD, suppressed MMP-3 overexpression, and reduced VEGF, TGF-β, and TIMP-1 levels compared with the controls (P < .05). In Vitro, doxycycline decreased HBMEC migration, tube formation, and the mRNA, protein, and enzymatic activity levels of MMP-3. MMP-3 overexpression in HBMECs promoted migration, while knockdown of MMP-3 significantly attenuated proliferation, migration, and tube formation (P < .05).

CONCLUSION: Our findings indicate that MMP-3 plays an important role in VH-related angiogenesis and the promotion of vascular remodeling. Suppression of MMP-3 overexpression by doxycycline may provide a potential strategy for inhibiting BAVM development.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app