Add like
Add dislike
Add to saved papers

PHYSICAL CHARACTERISATION OF FOUR DIFFERENT COMMERCIAL DIGITAL BREAST TOMOSYNTHESIS SYSTEMS.

The aim of this article was to characterise the performance of four different digital breast tomosynthesis (DBT) systems in terms of dose and image quality parameters. One of them, GE Pristina, has never been tested before. Average glandular doses were measured both in DBT and 2D full field digital mammography mode. Several phantoms were employed to perform signal difference to noise ratio, slice sensitivity profile, slice to slice incrementation, chest wall offset, z-axis geometry, artefact spread function, low contrast detectability, contrast detail evaluations, image uniformity and in-plane MTF in chest wall-nipple and in tube-travel directions. There are many differences in DBT systems explored: the angular range, detector type, reconstruction algorithms, and the presence or not of the grid. Even if it is not simple to calculate a global figure of merit, the analysis of all the collected data can be useful in a contest of a quality assurance program to define a set of values that could be used as benchmarks.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app