JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

An expanded enzyme toolbox for production of cis, cis-muconic acid and other shikimate pathway derivatives in Saccharomyces cerevisiae.

FEMS Yeast Research 2018 March 2
A wide range of commercially relevant aromatic chemicals can be synthesized via the shikimic acid pathway. Thus, this pathway has been the target of diverse metabolic engineering strategies. In the present work, an optimized yeast strain for production of the shikimic acid pathway intermediate 3-dehydroshikimate (3-DHS) was generated, which is a precursor for the production of the valuable compounds cis, cis-muconic acid (CCM) and gallic acid (GA). Production of CCM requires the overexpression of the heterologous enzymes 3-DHS dehydratase AroZ, protocatechuic acid (PCA) decarboxylase AroY and catechol dioxygenase CatA. The activity of AroY limits the yield of the pathway. This repertoire of enzymes was expanded by a novel fungal decarboxylase. Introducing this enzyme into the pathway in the optimized strain, a titer of 1244 mg L-1 CCM could be achieved, yielding 31 mg g-1 glucose. This represents the highest yield of this compound reported in Saccharomyces cerevisiae to date. To demonstrate the applicability of the optimized strain for production of other compounds from 3-DHS, we overexpressed AroZ together with a mutant of a para-hydroxybenzoic acid hydroxylase with improved substrate specificity for PCA, PobAY385F. Thereby, we could demonstrate the production of GA for the first time in S. cerevisiae.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app