Add like
Add dislike
Add to saved papers

Strain Stabilization of Superionicity in Copper and Lithium Selenides.

Superionic (SI) phases have utility as solid electrolytes for next generation battery technology, but these phases are typically not stable at room temperature. Our density functional theory calculations demonstrate that compressive lattice strain can stabilize SI phases of Cu2 Se and Li2 Se, two potential solid electrolytes. Electronic and bonding insights into this effect are obtained. In the ordered, non-SI phase, cations are localized primarily in tetrahedral (T) interstices with little access to the higher-energy octahedral (O) sites, but 1-2% compressive strain promotes attractive stabilization of the O cations with 6-fold coordination to Se anions, at the expense of the stability of 4-fold-coordinated T cations. In such compressed lattices, cations can access both T and O sites, resulting in a cation-disordered, SI phase. Thus, lattice strain is demonstrated as a handle for controlling ionic structure and transport and accomplishing ambient temperature superionicity.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app