Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Optimizing Vancomycin Monitoring in Pediatric Patients.

BACKGROUND: Several studies have reported that trough levels may not be optimal for monitoring vancomycin therapy, because of overexposure and nephrotoxicity risks. Therefore, we developed a population pharmacokinetic model to optimize vancomycin dosing and monitoring in pediatrics.

METHODS: Data were retrospectively collected on 76 pediatric patients 1-12 years of age, admitted to general pediatric wards or intensive care units at King Saud University Medical City, Riyadh, Saudi Arabia. The predictability of 3 methods for calculating the area under the curve (AUC) at steady state was assessed for optimum vancomycin therapy monitoring. The 3 methods were simple linear regression, Bayesian approach and the 2-sample pharmacokinetic equation method. We also used Monet Carlo simulations to evaluate the dosing of vancomycin.

RESULTS: A 1-compartment model adequately described the data. A strong correlation occurred between the observed and predicted AUC from 0 to 24 hours (AUC0-24h) calculated using the Bayesian approach with a trough sample only or pharmacokinetic equations based on 2 measured samples (R = 0.93 and 0.92, respectively). For the simple linear regression method with a trough sample only, the predicted AUC0-24h at steady state with vancomycin trough levels of 10, 15 and 20 µg/mL were 413, 548 and 714 µg·hour/mL, respectively. The target AUC0-24h above 400 was achieved in 46% and 95% of individuals with trough values of 7-11 and 11-15 µg/mL, respectively. Monte Carlo simulations showed that 60-80 mg/kg/d doses are needed to optimize vancomycin therapy.

CONCLUSIONS: In conclusion, targeting vancomycin trough levels above 15 µg/mL in pediatrics would overshoot the target AUC0-24h above 400 and expose them to unnecessary adverse events.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app