Add like
Add dislike
Add to saved papers

Electrochemical Sensing of Bisphenol A on Facet-Tailored TiO 2 Single Crystals Engineered by Inorganic-Framework Molecular Imprinting Sites.

Noble metals, nanostructured carbon, and their hybrids are widely used for electrochemical detection of persistent organic pollutants. However, despite of the rapid detection process and high accuracy, these materials generally suffer from high costs, metallic impurity, heterogeneity, irreversible adsorption and poor sensitivity. Herein, the high-energy {001}-exposed TiO2 single crystals with specific inorganic-framework molecular recognition ability was prepared as the electrode material to detect bisphenol A (BPA), a typical and widely present organic pollutant in the environment. The oxidation peak current was linearly correlated to the BPA concentration from 10.0 nM to 20.0 μM ( R2 = 0.9987), with a low detection limit of 3.0 nM (S/N = 3). Furthermore, it exhibited excellent discriminating ability, high anti-interference capacity, and good long-term stability. Its good performance for BPA detection in real environmental samples, including tap water, lake and river waters, domestic wastewater, and municipal sludge, was also demonstrated. This work extends the applications of TiO2 semiconductor and suggests that this material could be used as a highly active, stable, low-cost, and environmentally benign electrode material for electrochemical sensing.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app