Add like
Add dislike
Add to saved papers

Inhibition of HIV Fusion by Small Molecule Agonists through Efficacy-Engineering of CXCR4.

ACS Chemical Biology 2018 April 21
CXC chemokine receptor 4 (CXCR4) is involved in multiple physiological and pathological processes, notably as a coreceptor for human immunodeficiency virus (HIV) cell entry. Its broad expression pattern and vital biological importance make CXCR4 a troublesome drug target, as disruption of the interaction with its endogenous ligand, CXC chemokine ligand 12 (CXCL12), has severe consequences. In fact, only one CXCR4 drug, the bicyclam antagonist and HIV entry inhibitor AMD3100 (Plerixafor/Mozobil), has been approved for clinical use, however only for stem cell mobilization-a consequence of CXCR4 antagonism. Here, we report the engineering of an efficacy switch mutation in CXCR4-F292A7.43 in the middle of transmembrane helix 7-that converted the antagonists AMD3100 and AMD11070 into partial agonists. As agonists on F292A CXCR4, AMD3100 and AMD11070 were less disruptive to CXCR4 signaling while they remained efficient inhibitors of HIV fusion. This demonstrates that small molecule CXCR4 agonists can have a therapeutic potential as HIV entry inhibitors.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app