Add like
Add dislike
Add to saved papers

Spin-encoded subwavelength all-optical logic gates based on single-element optical slot nanoantennas.

Nanoscale 2018 March 2
Optical logic gates are important elements in optical computing and optical circuits. However, the footprints of the present optical logic gates are still on the micrometer scale. Further miniaturization of the logic gates to nanometer scale remains challenging. Here we propose, and demonstrate experimentally, subwavelength all-optical logic gates based on single-element optical slot nanoantennas. By employing a spin-encoded scheme, we achieve OR, AND, NOT, NAND and NOR logic gates via an L-shaped optical slot nanoantenna with a footprint of 300 nm by 300 nm, and a XNOR logic gate via a rectangle optical slot nanoantenna with a footprint of 220 nm by 60 nm. The SPP launching and logic operation via mode coupling instead of path interference are integrated together at a single-element nanoantenna, which considerably shrinks the dimensions of the device. The experimental results show the potential of the single optical slot nanoantenna in subwavelength all-optical logic computing and nanophotonic information processing.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app