Add like
Add dislike
Add to saved papers

Quantitative analysis of phantom studies of 111 In and 68 Ga imaging of neuroendocrine tumours.

EJNMMI Physics 2018 Februrary 21
BACKGROUND: Nuclear medicine imaging of neuroendocrine tumours is performed either by SPECT/CT imaging, using 111 In-octreotide or by PET/CT imaging using 68 Ga-radiolabelled somatostatin analogs. These imaging techniques will give different image quality and different detection thresholds for tumours, depending on size and activity uptake. The aim was to evaluate the image quality for 111 In-SPECT and 68 Ga-PET imaging, i.e. the smallest volume possible to visualize for different source-to-background activity ratios. The accuracy of quantification of lesion volume and activity was also investigated to develop an objective evaluation for radionuclide therapy eligibility. The phantom study was performed using the NEMA IEC Body Phantom with six hot spheres having inner diameters of 10, 13, 17, 22, 28, and 37 mm, filled with either 68 Ga or 111 In with sphere-to-background ratios (SBRs) of no background activity, 5:1, 2.5:1, and 1.25:1. Activity ratios of 1.25:1 and 2.5:1 are clinically found for lesions close to the liver and spleen. Clinical acquisition and reconstruction protocols were applied. Line profiles were drawn to evaluate the smallest detectable volume within a given SBR. Recovery curves based on threshold-based VOIs, threshold-based VOIs adapted to the background and CT-based ROIs were obtained for all SBRs and sphere diameters, allowing for quantification.

RESULTS: The 10-mm sphere was not possible to detect in SPECT images. It was detectable in PET images for SBRs of 2.5:1 and higher. In a background corresponding to the activity uptake in the liver, spheres larger than 22-37 mm were detectable in the 111 In-SPECT images and spheres larger than 13-22 mm were detectable in the 68 Ga-PET images. The maximum activity concentration was accurately quantified for spheres larger than 22 mm in the PET images; however, the quantification was impaired by sphere size and background activity.

CONCLUSIONS: It was not possible to detect the 10-mm sphere in any of the SPECT images. In a background corresponding to the activity uptake in the liver, spheres larger than approximately 30 mm were visible in the 111 In-SPECT images and spheres larger than approximately 17 mm were visible in the 68 Ga-PET images. Sphere diameter and background activity strongly affect the possibility of a correct quantification.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app