Add like
Add dislike
Add to saved papers

Study of Trans Fatty Acid Formation in Oil by Heating Using Model Compounds.

The intake of trans fatty acids (TFAs) in foods changes the ratio of low density lipoprotein (LDL) to high density lipoprotein (HDL) cholesterol in blood, which causes cardiovascular disease. TFAs are formed by trans isomerization of unsaturated fatty acids (UFAs). The most recognized formation mechanisms of TFAs are hydrogenation of liquid oil to form partially hydrogenated oil (PHO,) and biohydrogenation of UFAs to form TFA in ruminants. Heating oil also forms TFAs; however, the mechanism of formation, and the TFA isomers formed have not been well investigated. In this study, the trans isomerization mechanism of unsaturated fatty acid formation by heating was examined using the model compounds oleic acid, trioleate, linoleic acid, and trilinoleate for liquid plant oil. The formation of TFAs was found to be suppressed by the addition of an antioxidant and argon gas. Furthermore, the quantity of formed TFAs correlated with the quantity of formed polymer in trioleate heated with air and oxygen. These results suggest that radical reactions form TFAs from UFAs by heating. Furthermore, trans isomerization by heating oleic acid and linoleic acid did not change the original double bond positions. Therefore, the distribution of TFA isomers formed was very simple. In contrast, the mixtures of TFA isomers formed from PHO and ruminant UFAs are complicated because migration of double bonds occurs during hydrogenation and biohydrogenation. These findings suggest that trans isomerization by heating is executed by a completely different mechanism than in hydrogenation and biohydrogenation.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app