JOURNAL ARTICLE
REVIEW
Add like
Add dislike
Add to saved papers

The ELENA facility.

The CERN Antiproton Decelerator (AD) provides antiproton beams with a kinetic energy of 5.3 MeV to an active user community. The experiments would profit from a lower beam energy, but this extraction energy is the lowest one possible under good conditions with the given circumference of the AD. The Extra Low Energy Antiproton ring (ELENA) is a small synchrotron with a circumference a factor of 6 smaller than the AD to further decelerate antiprotons from the AD from 5.3 MeV to 100 keV. Controlled deceleration in a synchrotron equipped with an electron cooler to reduce emittances in all three planes will allow the existing AD experiments to increase substantially their antiproton capture efficiencies and render new experiments possible. ELENA ring commissioning is taking place at present and first beams to a new experiment installed in a new experimental area are foreseen in 2017. The transfer lines from ELENA to existing experiments in the old experimental area will be installed during CERN Long Shutdown 2 (LS2) in 2019 and 2020. The status of the project and ring commissioning will be reported.This article is part of the Theo Murphy meeting issue 'Antiproton physics in the ELENA era'.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app