Add like
Add dislike
Add to saved papers

Wet air oxidation of cresylic spent caustic - A model compound study over graphene oxide (GO) and ruthenium/GO catalysts.

Wet air oxidation (WAO) is a candidate technique for the effective treatment of spent caustic wastewater. In this work, cresols were chosen as model compounds to represent cresylic spent caustic wash. Graphene oxide (GO) is a promising catalyst as well as support for the wet oxidation process, due to its unique structure and properties. For the first time, GO and ruthenium supported on graphene oxide (Ru/GO) were employed for WAO of cresylic isomers. The aforesaid materials were synthesized by modified Hummer's method and characterized using scanning electron microscopy (SEM), field emission scanning electron microscopy (FE-SEM), transmission electron microscopy (TEM), Fourier transform infrared (FT-IR) spectroscopy, X-ray diffraction (XRD) and Brunauer-Emmett-Teller (BET) analysis. The performance of the investigated materials for WAO of cresols was studied in a slurry reactor. The best reaction conditions for GO were 175 °C and 0.69 MPa O2 pressure. Total organic carbon (TOC) degradation achieved at these conditions was 54.9, 48.9 and 61.2% for o-cresol, m-cresol and p-cresol, respectively. The amount of TOC degradation obtained by using Ru/GO at the same reaction conditions was 66.4, 53.4 and 73.9% for o-cresol, m-cresol and p-cresol, respectively. It was found that the order of reactivity for cresols was p-cresol > o-cresol > m-cresol. Finally, kinetics of TOC destruction during CWAO of p-cresol over GO was described using a two-step power law model.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app