Add like
Add dislike
Add to saved papers

Sparse representation for Lamb-wave-based damage detection using a dictionary algorithm.

Ultrasonics 2018 July
Lamb waves are being investigated extensively for structural health monitoring (SHM) because of their characteristics of traveling long distances with little attenuation and sensitivity to minor local damage in structures. However, Lamb waves are dispersive, which results in the complex overlap of waveforms in the damage detection applications of the SHM community. This paper proposes a sparse representation strategy based on an l1 -norm optimization algorithm for guided-Lamb-wave-based inspections. A comprehensive dictionary is designed containing various waveforms under diverse conditions so that the received waveform can be decomposed into a spatial domain for the identification of damage location. Furthermore, the l1 -norm optimization algorithm is employed to pursue the sparse solution related to the physical damage location. The functionality of the created dictionary is validated by both metal beam and composite wind turbine experiments. The results indicate a great potential for the proposed sparse representation using a dictionary algorithm, which provides an effective alternative approach for damage detection.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app