Add like
Add dislike
Add to saved papers

Prolyl carboxypeptidase in Agouti-related Peptide neurons modulates food intake and body weight.

OBJECTIVE: Prolyl carboxypeptidase (PRCP) plays a role in the regulation of energy metabolism by inactivating hypothalamic α-melanocyte stimulating hormone (α-MSH) levels. Although detected in the arcuate nucleus, limited PRCP expression has been observed in the arcuate POMC neurons, and its site of action in regulating metabolism is still ill-defined.

METHODS: We performed immunostaining to assess the localization of PRCP in arcuate Neuropeptide Y/Agouti-related Peptide (NPY/AgRP) neurons. Hypothalamic explants were then used to assess the intracellular localization of PRCP and its release at the synaptic levels. Finally, we generated a mouse model to assess the role of PRCP in NPY/AgRP neurons of the arcuate nucleus in the regulation of metabolism.

RESULTS: Here we show that PRCP is expressed in NPY/AgRP-expressing neurons of the arcuate nucleus. In hypothalamic explants, stimulation by ghrelin increased PRCP concentration in the medium and decreased PRCP content in synaptic extract, suggesting that PRCP is released at the synaptic level. In support of this, hypothalamic explants from mice with selective deletion of PRCP in AgRP neurons (PrcpAgRPKO ) showed reduced ghrelin-induced PRCP concentration in the medium compared to controls mice. Furthermore, male PrcpAgRPKO mice had decreased body weight and fat mass compared to controls. However, this phenotype was sex-specific as female PrcpAgRPKO mice show metabolic differences only when challenged by high fat diet feeding. The improved metabolism of PrcpAgRPKO mice was associated with reduced food intake and increased energy expenditure, locomotor activity, and hypothalamic α-MSH levels. Administration of SHU9119, a potent melanocortin receptor antagonist, selectively in the PVN of PrcpAgRPKO male mice increased food intake to a level similar to that of control mice.

CONCLUSIONS: Altogether, our data indicate that PRCP is released at the synaptic levels and that PRCP in AgRP neurons contributes to the modulation of α-MSH degradation and related metabolic control in mice.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app