Add like
Add dislike
Add to saved papers

Shape-Control of Three-Dimensional Self-Assembly Graphene by Hydrothermal Reaction Time and Its Biological Application.

In this paper, three-dimensional self-assembly graphene (3D-G) was prepared by the hydrothermal synthesis method, and 3D-G was designed as a suitable biological scaffold for cell growth and adhesion. The shape of 3D-G was tuned by adjusting the hydrothermal reaction time (6 h, 12 h, 18 h and 24 h). Then the scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FT-IR), Raman spectroscopy and X-ray photoelectron spectroscopy (XPS) analyses were used to characterize the microstructure and component of 3D-G, which showed that the length, diameter, pore size and defects of 3D-G were all decreased as the reaction-time increased. In vitro cell culture experiment, the cytocompatibility of 3D-G prepared under different hydrothermal reaction time was assessed using mouse fibroblast cells (L929) via 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2-H-tetrazolium bromide (MTT). Meanwhile, the cell adhesion, growth and proliferation were also observed by SEM. These results showed that the 3D-G with the reaction time of 24 h (3D-G/24 h) had the best cytocompatibility, which could be used as tissue scaffolds for cell growth.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app