Add like
Add dislike
Add to saved papers

A mechanistic review of particle overload by titanium dioxide.

Chronic exposure to titanium dioxide (TiO2 ) induces slight but significant pulmonary inflammation in experimental animals, and among potential mechanisms, particle overload is likely. Although mechanisms of particle overload are poorly understood, excess accumulation of dust particles in dust containing macrophages (dust cells) can impair their mobility, resulting in reduced clearance ability. Accordingly, retention half-times of inhaled TiO2 increase linearly with lung burden in rodents, and mathematical (Michaelis-Menten-like) models for pulmonary clearance rates of TiO2 as a function of lung burden have suggested an alternative mechanism for particle overload, involving excess accumulation of macrophages in the translocation pathway due to the narrow exit to the ciliated airway region, and leading to reduced pulmonary TiO2 clearance rates. This mechanism is consistent with observations showing that TiO2 retention half-times in the lungs of rats and mice show no change from the initial value until the lung burden exceeds around mass burden of 3 mg or surface area burden of 1000 cm2 . In addition, excess accumulation of macrophages is consistent with several particle overload-associated pathological changes, including accelerated neutrophilic inflammation, elevation of lymph node burden, and epithelial cell hyperplasia. Because excessive alveolar accumulation of macrophages may accelerate interstitialization of macrophages (including dust cells) and subsequent migration into lymph nodes, alveolar macrophages and dust cells likely migrate into interstitial spaces and escape to the luminal side of the ciliated airway region.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app