Add like
Add dislike
Add to saved papers

Pyrazole-Tetrazole Hybrid with Trinitromethyl, Fluorodinitromethyl, or (Difluoroamino)dinitromethyl Groups: High-Performance Energetic Materials.

High-nitrogen-content compounds have attracted great scientific interest and technological importance because of their unique energy content, and they find diverse applications in many fields of science and technology. Understanding of structure-property relationship trends and how to modify them is of paramount importance for their further improvement. Herein, the installation of oxygen-rich modules, C(NO2 )3 , C(NO2 )2 F, or C(NO2 )2 NF2 , into an endothermic framework, that is, the combination of a nitropyrazole unit and tetrazole ring, is used as a way to design novel energetic compounds. Density, oxygen balance, and enthalpy of formation are enhanced by the presence of these oxygen-containing units. The structures of all compounds were confirmed by XRD. For crystal packing analysis, it is proposed to use new criterion, ΔOED , that can serve as a measure of the tightness of molecular packing upon crystal formation. Overall, the materials show promising detonation and propulsion parameters.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app