Add like
Add dislike
Add to saved papers

Halloysite nanotubes-induced Al accumulation and oxidative damage in liver of mice after 30-day repeated oral administration.

Halloysite (Al2 Si2 O5 (OH)4 ·nH2 O) nanotubes (HNTs) are natural clay materials and widely applied in many fields due to their natural hollow tubular structures. Many in vitro studies indicate that HNTs exhibit a high level of biocompatibility, however the in vivo toxicity of HNTs remains unclear. The objective of this study was to assess the hepatic toxicity of the purified HNTs in mice via oral route. The purified HNTs were orally administered to mice at 5, 50, and 300 mg/kg body weight (BW) every day for 30 days. Oral administration of HNTs stimulated the growth of the mice at the low dose (5 mg/kg BW) with no liver toxicity, but inhibited the growth of the mice at the middle (50 mg/kg BW) and high (300 mg/kg BW) doses. In addition, oral administration of HNTs at the high dose caused Al accumulation in the liver but had no marked effect on the Si content in the organ. The Al accumulation caused significant oxidative stress in the liver, which induced hepatic dysfunction and histopathologic changes. These findings demonstrated that Al accumulation-induced oxidative stress played an important role in the oral HNTs-caused liver injury.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app