Add like
Add dislike
Add to saved papers

In vivo biocompatibility and degradation of novel Polycaprolactone-Biphasic Calcium phosphate scaffolds used as a bone substitute.

BACKGROUND: Biocompatibility and degradation of poly ε-caprolactone (PCL)-Biphasic Calcium Phosphate (BCP) scaffolds fabricated by the "Melt Stretching and Compression Molding (MSCM)" technique were evaluated in rat models.

OBJECTIVES: Degradation behaviors and histological biocompatibility of the PCL-20% BCP MSCM scaffolds and compare with those of PCL-20% β-tricalcium phosphate (TCP) scaffolds commercially fabricated by Fused Deposition Modeling (FDM) were evaluated.

METHODS: The study groups included Group A: PCL-20% BCP MSCM scaffolds and Group B: PCL-20% TCP FDM scaffolds, which were implanted subcutaneously in twelve male Wistar rats. On day 14, 30, 60 and 90, dimensional changes of the scaffolds and their surrounding histological features were assessed using Micro-Computed Tomography (μ-CT) and histological analysis. Changes of their molecular weight were assessed using Gel Permeation Chromatography (GPC).

RESULTS: Formation of collagen and new blood vessels throughout the scaffolds of both groups increased with time with low degrees of inflammation. The μ-CT and GPC analysis demonstrated that the scaffolds of both groups degraded with time, but, their molecular weight slightly changed over the observation periods. All results of both groups were not significantly different.

CONCLUSIONS: The PCL-20% BCP MSCM scaffolds were biocompatible and biodegradable in vivo. Their properties were comparable to those of the commercial PCL-20% TCP scaffolds.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app