Add like
Add dislike
Add to saved papers

Graphdiyne Nanosheet-Based Drug Delivery Platform for Photothermal/Chemotherapy Combination Treatment of Cancer.

Nowadays, two-dimensional (2D) materials have attracted extensive attention as cancer drug delivery platforms owing to their unparalleled physicochemical properties and superior specific surface area. Graphdiyne (GDY) is a novel 2D carbon material. Compared with graphene, GDY not only has benzene rings composed of sp2 -hybridized carbon atoms but also has acetylene units composed of sp-hybridized carbon atoms; therefore, it possesses multiple conjugated electronic structures. Herein, we used doxorubicin (DOX) as a model drug to develop a GDY nanosheet-based drug delivery platform for a photothermal/chemotherapy combination in living mice. With a high photothermal conversion ability and drug loading efficiency, GDY/DOX under 808 nm laser irradiation showed a much higher cancer inhibition rate compared with solo therapy both in vitro and in vivo. Furthermore, GDY exhibited great biocompatibility and no obvious side effects, as shown by histopathological examination and serum biochemical analysis. For the first time, our work demonstrated a successful example of GDY for efficient photothermal/chemotherapy and suggests both safety and great promise for GDY in cancer treatment.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app