Add like
Add dislike
Add to saved papers

Pseudohalide-Induced 2D (CH 3 NH 3 ) 2 PbI 2 (SCN) 2 Perovskite for Ternary Resistive Memory with High Performance.

Small 2018 March
Recently, organic-inorganic hybrid perovskites (OIHP) are studied in memory devices, but ternary resistive memory with three states based on OIHP is not achieved yet. In this work, ternary resistive memory based on hybrid perovskite is achieved with a high device yield (75%), much higher than most organic ternary resistive memories. The pseudohalide-induced 2D (CH3 NH3 )2 PbI2 (SCN)2 perovskite thin film is prepared by using a one-step solution method and fabricated into Al/perovskite film/indium-tin oxide (glass substrate as well as flexible polyethylene terephthalate substrate) random resistive access memory (RRAM) devices. The three states have a conductivity ratio of 1:103 :107 , long retention over 10 000 s, and good endurance properties. The electrode area variation, impedance test, and current-voltage plotting show that the two resistance switches are attributable to the charge trap filling due to the effect of unscreened defect in 2D nanosheets and the formation of conductive filaments, respectively. This work paves way for stable perovskite multilevel RRAMs in ambient atmosphere.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app