Add like
Add dislike
Add to saved papers

Validation of a blood marker for plasma volume in endurance athletes during a live-high train-low altitude training camp.

Drug Testing and Analysis 2018 Februrary 20
Altitude is a confounding factor within the Athlete Biological Passport (ABP) due, in part, to the plasma volume (PV) response to hypoxia. Here, a newly developed PV blood test is applied to assess the possible efficacy of reducing the influence of PV on the volumetric ABP markers; haemoglobin concentration ([Hb]) and the OFF-score. Endurance athletes (n=34) completed a 21-night simulated live-high train-low (LHTL) protocol (14 h.d-1 at 3000 m). Bloods were collected twice pre-altitude; at days 3, 8, and 15 at altitude; and 1, 7, 21, and 42 days post-altitude. A full blood count was performed on the whole blood sample. Serum was analysed for transferrin, albumin, calcium, creatinine, total protein, and low-density lipoprotein. The PV blood test (consisting of the serum markers, [Hb] and platelets) was applied to the ABP adaptive model and new reference predictions were calculated for [Hb] and the OFF-score, thereby reducing the PV variance component. The PV correction refined the ABP reference predictions. The number of atypical passport findings (ATPFs) for [Hb] was reduced from 7 of 5 subjects to 6 of 3 subjects. The OFF-score ATPFs increased with the PV correction (from 9 to 13, 99% specificity); most likely the result of more specific reference limit predictions combined with the altitude-induced increase in red cell production. Importantly, all abnormal biomarker values were identified by a low confidence value. Although the multifaceted, individual physiological response to altitude confounded some results, the PV model appears capable of reducing the impact of PV fluctuations on [Hb].

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app