Add like
Add dislike
Add to saved papers

Impact of Glutathione Modulation on Stability and Pharmacokinetic Profile of Redox-Sensitive Nanogels.

Small 2018 April
Nanoparticles degradable upon external stimuli combine pharmacokinetic features of both small molecules as well as large nanoparticles. However, despite promising preclinical results, several redox responsive disulphide-linked nanoparticles failed in clinical translation, mainly due to their unexpected in vivo behavior. Glutathione (GSH) is one of the most evaluated antioxidants responsible for disulfide degradation. Herein, the impact of GSH on the in vivo behavior of redox-sensitive nanogels under physiological and modulated conditions is investigated. Labelling of nanogels with a DNA-intercalating dye and a radioisotope allows visualization of the redox responsiveness at the cellular and the systemic levels, respectively. In vitro, efficient cleavage of disulphide bonds of nanogels is achieved by manipulation of intracellular GSH concentration. While in vivo, the redox-sensitive nanogels undergo, to a certain extent, premature degradation in circulation leading to rapid renal elimination. This instability is modulated by transient inhibition of GSH synthesis with buthioninsulfoximin. Altered GSH concentration significantly changes the in vivo pharmacokinetics. Lower GSH results in higher elimination half-life and altered biodistribution of the nanogels with a different metabolite profile. These data provide strong evidence that decreased nanogel degradation in blood circulation can limit the risk of premature drug release and enhance circulation half-life of the nanogel.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app