Add like
Add dislike
Add to saved papers

Electrospinning of Polycaprolactone/Pluronic F127 dissolved in glacial acetic acid: fibrous scaffolds fabrication, characterization and in vitro evaluation.

Abstracts The Polycaprolactone (PCL) fibrous scaffolds in nano to micro scale have been considered as excellent templates for cell culture and tissue growth. The hydrophobic nature of the PCL, however, yields low initial cell seeding density, heterogeneous cell spreading and slow cell growth rate. Therefore, in this study the surface hydrophilic fibrous scaffolds were directly fabricated by the electrospinning of PCL solutions with small quantities (0.5-5%) of Pluronic F127 (PEO100 -PPO65 -PEO100 ) dissolved in benign solvent of glacial acetic acid. The clear and miscible solutions were achieved by controlling the proper F127 content in the blend solutions. The continuous and smooth fibers with average diameters from 0.71 to 1.43 μm made up the fibrous scaffolds in non-woven mode. Then the water wetting angle of the scaffolds could be adjusted from 126° to 0° by varying F127 content owing to its hydrophilic PEO chains presented on surface the blended fibers. Finally, it was demonstrated that the blended fibrous scaffolds with the F127 content less than 1% exhibited better cell attachment, proliferation and spreading performance than those of pure PCL scaffolds.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app