Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

A Self-Targeting, Dual ROS/pH-Responsive Apoferritin Nanocage for Spatiotemporally Controlled Drug Delivery to Breast Cancer.

Biomacromolecules 2018 March 13
In this study, an intelligent pH and ROS dual-responsive drug delivery system based on an apoferritin (AFt) nanocage was prepared. This therapeutic system can specifically self-target 4T1 breast cancer cells by exploiting L-apoferritin receptor SCARA 5, avoiding the nonspecific binding or aggregation of nanoparticles due to the chemical functionalization for targeting. The characteristics of AFt were utilized for the simultaneous delivery of anticancer drug doxorubicin (DOX) and photosensitizer rose bengal (RB). RB exhibited efficient reactive oxygen species (ROS) generation, which can be applied to photodynamic therapy. Meanwhile, the AFt nanocage was prone to undergoing peptide backbone cleavage when oxidized by ROS. Therefore, by combining the intrinsic pH-responsive property of AFt, the dual ROS/pH-responsive system was developed. The time and location of drug release can be controlled by the combination of internal and external stimulus, which avoids the incomplete drug release under single stimulus response. The drug release rate increased significantly (from 26.1% to 92.0%) under low-pH condition (pH 5.0) and laser irradiation. More DOX from AFt entered the nucleus and killed the tumor cells, and the cell inhibition rate was up to ∼83% (DOX concentration: 5 μg/mL) after 48 h incubation. In addition, the biodistribution and the in vivo antitumor efficacy (within 14 d treatment) of the nanosystem were investigated in 4T1 breast cancer BALB/c mice. The results indicated that the system is a promising therapeutic agent involving ROS/pH dual response, self-targeting, and chemo-photodynamic therapy.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app