Add like
Add dislike
Add to saved papers

Separation of positional isomers of nine 2-phenethylamine-derived designer drugs by liquid chromatography-tandem mass spectrometry.

Drug Testing and Analysis 2018 Februrary 19
The synthesis of positional isomers of designer drugs is a common way of bypassing legal restrictions. For forensic case work, and especially for the legal assessment of cases, there is a need for screening methods capable of the unequivocal identification of positional isomers. The presented liquid chromatography-electrospray ionization-tandem mass spectrometry (LC-ESI-MS/MS) method facilitates separation of positional isomers of 9 2-phenethylamine-derived designer drugs in different matrices including seized materials, hair, serum, and urine specimens. Chromatographic separation was achieved on a biphenyl phase using gradient elution with a total runtime of 26 minutes. The limit of detection was 25 pg/mg for hair samples and ranged from 0.1 ng/mL to 0.5 ng/mL for serum and from 0.2 ng/mL to 1.2 ng/mL for urine samples. The method proved to be selective and sensitive and showed good chromatographic resolution (R ≥ 1.2). The method was successfully applied to routine case samples.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app