Journal Article
Review
Add like
Add dislike
Add to saved papers

Investigation of amino-grafted TiO 2 /reduced graphene oxide hybrids as a novel photocatalyst used for decomposition of selected organic dyes.

A novel type of photocatalyst - hybrids of amino-grafted titania and reduced graphene oxide - was synthesized by a hydrothermal method. The hybrids were comprehensively analyzed, including determination of their morphology (TEM), porous structure parameters (low-temperature N2 sorption) and crystalline structure (XRD). Additionally, to confirm the effective bonding of the amino-grafted titania and reduced graphene oxide, Raman and X-ray photoelectron spectroscopy (XPS) were used, in addition to elemental analysis. The key stage of the research was an evaluation of the photocatalytic activity of the synthesized hybrid photocatalysts with respect to the decomposition of C.I. Basic Blue 9 and C.I. Basic Red 1 dyes. It was found that the amino-grafted titania/reduced graphene oxide hybrids exhibited better photocatalytic activity in the degradation of C.I. Basic Blue 9 and C.I. Basic Red 1 than amino-grafted TiO2 alone. The high efficiency of dye decomposition can be attributed to the higher BET surface area and good separation of photogenerated electrons and holes offered by graphene oxide.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app