Journal Article
Research Support, N.I.H., Extramural
Add like
Add dislike
Add to saved papers

Mechanism for initiation of food allergy: Dependence on skin barrier mutations and environmental allergen costimulation.

BACKGROUND: Mechanisms for the development of food allergy in neonates are unknown but clearly linked in patient populations to a genetic predisposition to skin barrier defects. Whether skin barrier defects contribute functionally to development of food allergy is unknown.

OBJECTIVE: The purpose of the study was to determine whether skin barrier mutations, which are primarily heterozygous in patient populations, contribute to the development of food allergy.

METHODS: Mice heterozygous for the filaggrin (Flg)ft and Tmem79ma mutations were skin sensitized with environmental and food allergens. After sensitization, mice received oral challenge with food allergen, and then inflammation, inflammatory mediators, and anaphylaxis were measured.

RESULTS: We define development of inflammation, inflammatory mediators, and food allergen-induced anaphylaxis in neonatal mice with skin barrier mutations after brief concurrent cutaneous exposure to food and environmental allergens. Moreover, neonates of allergic mothers have increased responses to suboptimal sensitization with food allergens. Importantly, responses to food allergens by these neonatal mice were dependent on genetic defects in skin barrier function and on exposure to environmental allergens. ST2 blockade during skin sensitization inhibited the development of anaphylaxis, antigen-specific IgE, and inflammatory mediators. Neonatal anaphylactic responses and antigen-specific IgE were also inhibited by oral pre-exposure to food allergen, but interestingly, this was blunted by concurrent pre-exposure of the skin to environmental allergen.

CONCLUSION: These studies uncover mechanisms for food allergy sensitization and anaphylaxis in neonatal mice that are consistent with features of human early-life exposures and genetics in patients with clinical food allergy and demonstrate that changes in barrier function drive development of anaphylaxis to food allergen.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app