Add like
Add dislike
Add to saved papers

Altered immunity in crowded Mythimna separata is mediated by octopamine and dopamine.

Scientific Reports 2018 Februrary 17
Similar to pathogenic infection, high population density alters insects' prophylactic immunity. Density-dependent prophylaxis has been reported in many polyphenic insects, but the regulatory mechanism underlying this phenomenon remains unclear. The biogenic monoamines are known to play critical roles in mediating insect immune responses. In the current study, the immune capacity and the levels of three biogenic monoamines were investigated in the polyphenic larvae of Mythimna separata, reared at the densities of 1, 2, 5, 10, and 30 larvae per 650-mL jar. Concomitant with the increased phenoloxidase (PO) activity and total haemocyte count in the larvae at high densities (5, 10, 30 larvae/jar), the octopamine level was also increased. In contrast, the dopamine level was decreased, and the 5-hydroxytryptamine level was not significantly affected. Injection of octopamine induced significant increases in the total haemocyte count and PO activity. Conversely, epinastine, a specific antagonist of octopamine, decreased the total haemocyte count and PO activity. Another octopamine antagonist, phentolamine, inhibited the activity of PO and lysozymes. In addition, injection of dopamine induced a significant increase in PO activity and decreased the total haemocyte count and lysozyme activity. These results suggested that both octopamine and dopamine mediate the increases in total haemocyte count and PO activity in the crowded larvae.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app