Add like
Add dislike
Add to saved papers

One-step conversion of agro-wastes to nanoporous carbons: Role in separation of greenhouse gases.

Highly microporous carbons have been synthesized from four types of agro-wastes of lignin, walnut shells, orange peels and apricot seeds by one-step carbonization/activation with potassium hydroxide (KOH) in varying ratios. The resultant carbons demonstrated BET specific surface areas of 727-2254 m2 /g, and total pore volumes 0.34-1.14 cm3 /g. These are higher than the majority of agro-waste derived carbons reported in the literature. For all the carbons, CO2 adsorption at 298 K was higher than SF6 followed by N2 suggesting a possible separation of CO2 and SF6 from N2 . The adsorbed amounts of CO2 at 298 K and 273 K and at pressures up to 760 Torr were 7.24 and 9.4 mmol/g, respectively which, to the best of our knowledge, are the highest CO2 uptakes in these temperatures by any carbon material reported so far. For all the gases, selectivity, mixed adsorption isotherms and adsorption breakthrough have been simulated from experimental data.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app