JOURNAL ARTICLE
REVIEW
Add like
Add dislike
Add to saved papers

Understanding of human ATP binding cassette superfamily and novel multidrug resistance modulators to overcome MDR.

Indeed, multi-drug resistance (MDR) is a significant obstacle to effective chemotherapy. The overexpression of ATP-binding cassette (ABC) membrane transporters is a principal cause of enhanced cytotoxic drug efflux and treatment failure in various types of cancers. At cellular level, the pumps of ABC family regulate the transportation of numerous substances including drugs in and out of the cells. In past, the overexpression of ABC pumps suggested a well-known mechanism of drug resistance in cancers as well as infectious diseases. In oncology, the search for new compounds for the inhibition of these hyperactive ABC pumps either genetically or functionally, growing interest to reverse multi-drug resistance and increase chemotherapeutic effects. Several ABC pump inhibitor/modulators has been explored to address the cancer associated MDR. However, the clinical results are still disappointing and conventional chemotherapies are constantly failed in successful eradication of MDR tumors. In this context, the structural and functional understanding of different ATP pumps is most important. In this concise review, we elaborated basic crystal structure of ABC transporter proteins as well as its critical elements such as different domains, motifs as well as some important amino acids which are responsible for ATP binding and drug efflux as well as demonstrated an ATP-switch model employed by various ABC membrane transporters. Furthermore, we briefly summarized different newly identified MDR inhibitors/modulators, deployed alone or in combination with cytotoxic agents to deal with MDR in different types of cancers.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app