Add like
Add dislike
Add to saved papers

Unusual Self-Assembly of the Recombinant Chlamydia trachomatis Major Outer Membrane Protein-Based Fusion Antigen CTH522 Into Protein Nanoparticles.

Sexually transmitted Chlamydia trachomatis infects more than 100 million people annually, and untreated chlamydia infections can cause severe complications. Therefore, there is an urgent need for a chlamydia vaccine. The Ctrachomatis major outer membrane protein (MOMP) is highly immunogenic but is a challenging vaccine candidate by being an integral membrane protein, and the immunogenicity depends on a correctly folded structure. We investigated the biophysical properties of the recombinant MOMP-based fusion antigen CTH522, which is tested in early human clinical trials. It consists of a truncated and cysteine-free version of MOMP fused to 4 variable domains from serovars D-G. In the native state, CTH522 did not exist as a monomer but showed an unusual self-assembly into nanoparticles with a negative zeta potential. In contrast to the β-barrel structure of MOMP, native CTH522 contained no well-defined secondary structural elements, and no thermal transitions were measurable. Chemical unfolding resulted in monomers that upon removal of the denaturant self-assembled into higher order structures, comparable to the structure of the native protein. The conformation of CTH522 in nanoparticles is thus not entirely random and contains structural elements stabilized via denaturant-disruptable hydrophobic interactions. In conclusion, CTH522 has an unusual quaternary structure of supramolecular self-assemblies.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app