Add like
Add dislike
Add to saved papers

Vibronic Coupling Analysis of the Ligand-Centered Phosphorescence of Gas-Phase Gd(III) and Lu(III) 9-Oxophenalen-1-one Complexes.

The gas-phase laser-induced photoluminescence of cationic mononuclear gadolinium and lutetium complexes involving two 9-oxophenalen-1-one ligands is reported. Performing measurements at a temperature of 83 K enables us to resolve vibronic transitions. Via comparison to Franck-Condon computations, the main vibrational contributions to the ligand-centered phosphorescence are determined to involve rocking, wagging, and stretching of the 9-oxophenalen-1-one-lanthanoid coordination in the low-energy range, intraligand bending, and stretching in the medium- to high-energy range, rocking of the carbonyl and methine groups, and C-H stretching beyond. Whereas Franck-Condon calculations based on density-functional harmonic frequency computations reproduce the main features of the vibrationally resolved emission spectra, the absolute transition energies as determined by density functional theory are off by several thousand wavenumbers. This discrepancy is found to remain at higher computational levels. The relative energy of the Gd(III) and Lu(III) emission bands is only reproduced at the coupled-cluster singles and doubles level and beyond.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app