Add like
Add dislike
Add to saved papers

Stacking Interactions of Heterocyclic Drug Fragments with Protein Amide Backbones.

ChemMedChem 2018 April 24
Stacking interactions can be important enthalpic contributors to drug binding. Among the less well-studied stacking interactions are those occurring between an arene and the π-face of an amide group. Given the ubiquity of heterocycles in drugs, combined with the abundance of amides in the protein backbone, optimizing these noncovalent interactions can provide a potential route to enhanced drug binding. Previously, Diederich et al. (ChemMedChem 2013, 8, 397-404) studied stacked dimers of a model amide with a set of 18 heterocycles, showing that computed interaction energies correlate with the dipole moments of the heterocycles and providing guidelines for the optimization of these interactions. We considered stacked dimers of the same model amide with a larger set of 28 heterocycles common in pharmaceuticals, by using more robust ab initio methods. While the overall trends in these new data corroborate many of the results of Diederich et al., these data provide a more refined view of the nature of amide stacking interactions. We present a robust scoring function for amide stacking interaction energies based on the molecular dipole moment and strength of the electric field above the arene.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app