Add like
Add dislike
Add to saved papers

Electronically Unsaturated Three-Coordinate Aluminum Hydride and Organoaluminum Cations.

New three-coordinate and electronically unsaturated aluminum hydride [LAlH]+ [HB(C6 F5 )3 ]- (LH=[{(2,6-iPr2 C6 H3 N)P(Ph2 )}2 N]H) and aluminum methyl [LAlMe]+ [MeB(C6 F5 )3 ]- cations have been prepared. The quantitative estimation of Lewis acidity by Gutmann-Beckett method revealed [LAlH]+ [HB(C6 F5 )3 ]- to be better Lewis acid than B(C6 F5 )3 and AlCl3 making these compounds ideal catalysts for Lewis acid-mediated reactions. To highlight that the work is of fundamental importance, catalytic hydroboration of aliphatic and aromatic aldehydes and ketones have been demonstrated. Important steps of the catalytic cycle have been probed by using multinuclear NMR measurements, including successful characterization of the proposed aluminum benzyloxide cationic intermediate, [LAl-O-CH2 Ph]+ [HB(C6 F5 )3 ]- . The proposed catalytic cycle has been found to be consistent with experimental observations and computational studies clearly indicating the migration of hydride from cationic aluminum center to the carbonyl carbon is the rate-limiting step of the catalytic cycle.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app