Add like
Add dislike
Add to saved papers

Addressing the temperature transferability of structure based coarse graining models.

Systematically derived coarse grained (CG) models for molecular liquids do not inherently guarantee transferability to a state point different from its reference, especially when derived on the basis of structure based CG methods like Inverse Monte Carlo (IMC). Several efforts made in the past years to improve the transferability of these models focused on including thermodynamic constraints or on the application of multistate parametrization. Das and Andersen (DA) [Das et al., J. Chem. Phys., 2010, 132, 164106.] proposed a different Ansatz. They derived a correction term added to the system's Hamiltonian to reproduce the virial pressure and the volume fluctuations of the reference system in the CG resolution which does not require further adjustment of the effective pair potential. Herein, we discuss the possibility to achieve temperature transferability with IMC models for selected alkanes following the optimization of the DA approach as proposed by Dunn and Noid (DN) [Dunn et al., J. Chem. Phys., 2015, 143, 243148.]. The work focuses on a novel approach to determine the DN correction term for different state points by linear interpolation.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app