Add like
Add dislike
Add to saved papers

Sprouting angiogenesis in engineered pseudo islets.

Biofabrication 2018 March 17
Despite the recent achievements in cell-based therapies for curing type-1 diabetes (T1D), capillarization in beta (β)-cell clusters is still a major roadblock as it is essential for long-term viability and function of β-cells in vivo. In this research, we report sprouting angiogenesis in engineered pseudo islets (EPIs) made of mouse insulinoma βTC3 cells and rat heart microvascular endothelial cells (RHMVECs). Upon culturing in three-dimensional (3D) constructs under angiogenic conditions, EPIs sprouted extensive capillaries into the surrounding matrix. Ultra-morphological analysis through histological sections also revealed presence of capillarization within EPIs. EPIs cultured in 3D constructs maintained their viability and functionality over time while non-vascularized EPIs, without the presence of RHMVECs, could not retain their viability nor functionality. Here we demonstrate angiogenesis in engineered islets, where patient specific stem cell-derived human beta cells can be combined with microvascular endothelial cells in the near future for long-term graft survival in T1D patients.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app