Add like
Add dislike
Add to saved papers

Molecular dynamics study of taxadiene synthase catalysis.

Molecular dynamics (MD) simulations have been performed to study the dynamic behavior of noncovalent enzyme carbocation complexes involved in the cyclization of geranylgeranyl diphosphate to taxadiene catalyzed by taxadiene synthase (TXS). Taxadiene and the observed four side products originate from the deprotonation of carbocation intermediates. The MD simulations of the TXS carbocation complexes provide insights into potential deprotonation mechanisms of such carbocations. The MD results do not support a previous hypothesis that carbocation tumbling is a key factor in the deprotonation of the carbocations by pyrophosphate. Instead water bridges are identified which may allow the formation of side products via multiple proton transfer reactions. A novel reaction path for taxadiene formation is proposed on the basis of the simulations. © 2018 Wiley Periodicals, Inc.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app